Group 3

Group 3

GUERRERO TROYO, Alejandra

MARGARIT, David Hipólito

VON HARTENTHAL, Francisco

NAGAI, Micael Eiji

ESPINOZA-PAREDES, Pedro Antonio

Alternative states and hysteresis in shallow lakes

Hysteresis

The study oh hysteresis is important for:

The study oh hysteresis is important for:

• Ecological studies

The study oh hysteresis is important for:

- Ecological studies
- Environmental management

Alternative states in shallow lakes

Alternative states in shallow lakes

Clear water with abundant submerged vegetation

Alternative states in shallow lakes

Turbid water with high phytoplankton densities

Clear water with abundant submerged vegetation

$$\frac{dM}{dt} = r.M(1 - (\frac{M}{k - \frac{k.F.\alpha}{F + 1}}))$$

r = growth rate of Macrophyta $\alpha =$ action of Phytoplankton upon K

$$\frac{dM}{dt} = r.M(1 - (\frac{M}{k - \frac{k.F.\alpha}{F + 1}}))$$

r = growth rate of Macrophyta $\alpha =$ action of Phytoplankton upon K

$$\frac{dN}{dt} = i - d((\frac{M.\beta}{M + m_{dec}}) + 1)N - c.N.F$$

i = nutrient input d = sedimentation rate due to M c = consuption rate by F

$$\frac{dM}{dt} = r.M(1 - (\frac{M}{k - \frac{k.F.\alpha}{F + 1}}))$$

$$r =$$
 growth rate of Macrophyta
 $\alpha =$ action of Phytoplankton upon K

$$\frac{dN}{dt} = i - dN((\frac{M.\beta}{M+1}) + 1) - c.N.F$$

$$i$$
 = nutrient input
 d = sedimentation rate due to M
 c = consuption rate by F

$$\frac{dF}{dt} = -b.F + e.c.F.N$$

b = mortality rate of F e = conversion efficiency of F

Note: N means only nutrients in suspension

Dimensionless model

$$\overline{a} = \frac{b}{r}, \overline{p} = \frac{iec}{r}$$

Dimensionless model

$$\overline{a} = \frac{b}{r}, \overline{p} = \frac{iec}{r}$$

$$\frac{dF}{dt} = -\overline{a}F + FN$$

$$\frac{dN}{dt} = \overline{p} - dN((\frac{M\beta}{M+1}) + 1) - cNF$$

$$\frac{dM}{dt} = M(1 - \frac{M(F+1)}{F(1 - \alpha + 1)})$$

Hysteresis!

Nutrient input (i)

Catastrophic change!

M₀>>F₀

Catastrophic change!

The behaviour of the system with perturbations

Time

Glory...

• We found hysteresis!!!

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;
- The dynamics of the system makes biological sense;

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;
- The dynamics of the system makes biological sense;
- Few parameters can explan a complex behaviour.

Glory...

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;
- The dynamics of the system makes biological sense;
- Few parameters can explan a complex behaviour.

Misery...

Glory...

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;
- The dynamics of the system makes biological sense;
- Few parameters can explan a complex behaviour.

Misery...

• The model is VERY simple;

Glory...

- We found hysteresis!!!
- The model shows the expected behaviour for N, M and F;
- The dynamics of the system makes biological sense;
- Few parameters can explain a complex behaviour.

Misery...

- The model is VERY simple;
- There isn't a carrying capacity for biomass of Phytoplankton.

Bibliography

Blindow, I. *et al.*, Long-term pattern of alternative stable states in two shallow eutrophic lakes. *Freshwater Biology* 30 (1993), 159.

Scheffer, M. *et al.*, Catastrophic shifts in ecosystems, *Nature* 413 (2001) 591. http://www.nature.com/nature/journal/v413/n6856/full/413591a0.html

Oguz, T. and Velikova, V., Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. *Marine Ecology Progress Series* 405 (2010) 231.

http://www.int-res.com/articles/meps2010/405/m405p231.pdf

Karrlson, J. *et al.*, Light limitation of nutrient-poor lake ecosystems. *Nature* 460 (2009)506. <u>http://www.nature.com/nature/journal/v460/n7254/full/nature08179</u>.<u>html</u>

Scheffer, M. and Egbert H. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. *Hydrobiologia* (2007) 584:455–466.

Bibliography

Petraitis, P. and Catharine H, Multiple stable states and relationship between thresholds in processes and states, *Marine Ecology Progress Series* (2010) 413: 189–200.

May, R. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. *Nature* 269, 471 - 477 (06 October 1977).

Scheffer, M. *et al.*, Alternative equilibria in shallow lakes. *Trends in Ecology* & *Evolution*, Volume 8, Issue 8, 275-279, 1 August 1993.

Scheffer, M. and Steven C. Catastrophic regime shifts in ecosystems: linking theory to observation, Review. *Trends in Ecology and Evolution* Vol.18 No.12 December 2003.

Genkai-Kato, M. Regime shifts: catastrophic responses of ecosystems to human impacts. *Ecological Rasearch*, 269, 471 - 477 (6 October 1977).

Scheffer, M. *et al.*, Alternative equilibria in shallow lakes. *Trends in Ecology & Evolution*, Volume 8, Issue 8, 275-279, 1 August 1993.

Thanks...

Thanks...

for all the t.a.`s and the teachers for the support;

Thanks...

for all the t.a.`s and the teachers for the support;

IFT – UNESP;

Thanks...

for all the t.a.`s and the teachers for the support;

IFT – UNESP;

Roberto Kraenkel;

Thanks...

for all the t.a.`s and the teachers for the support;

IFT – UNESP;

Roberto Kraenkel;

and all the colleagues!!

